J. GUIDANCE, VOL. 18, NO. 4: ENGINEERING NOTES 921

Two parameters will be allowed to vary, namely m; (equivalent to
61) and k;, (equivalent to 6,). The mass and stiffness matrices and
their nonzero derivatives are

1 00 3 -1 0
M=|0 1 0lke K=|-1 2 —-1|Nm!
0 01 0 -1 3
M 1 00 oK 1 -1 0
; =000 ;_k_ =|-1 10
o o o0 o 0 0 0
The first eigenvalue and mass-normalized eigenvector are
| 1
Ay = lrad®s™2 pr=—=42% kg™
1 1 76 ,
The eigenvalue derivatives may be calculated from Eq. (4) as
9A 1 2 =241 A 1 2 —2 N1
= ——rad k — = —rad N
am, 6ra s~“ kg ok 6ra s m
The eigenvector derivatives may be calculated using Egs. (5-9) as
5
_8_<_p_1_ = L ~5 % kgt
ami 1846 | 4
56 | 17
oP1 0.5 \j—1
—_— = ——{ -8 } k N™'m
Oy 366 | _, &

The second-order eigenvalue derivatives may then be calculated
from Eq. (11) as

32 7 32\ 25
TN rad?s kg2 LA 22 rad? s 2 N2y
om3 108 ok2 108
P _ 3 rad?s2kg ' N"'m
om0k, 27 g

Some of the intermediate steps in the calculation of the second-order
eigenvector derivative with respect to m; will now be shown. The
vector vy;p is given by Eq. (14) as the solution of

2 -1 0 . 7
1 1 “1|yy=—=1{-
0 -1 2 1086 |

Since the largest element of the eigenvector is the second, we will
let the second element of v,y equal zero. Thus v,;, is given by the
solution of

2 00 ) 7 ) 7

010 Vg = ———= or vy —

P 1086 | | 2166 | |
The constant cjy; is given by Eq. (16) as ¢;1; = —43/324 and the
eigenvector derivative by Eq. (13) as

65
824)1 . 1 k —25
am3 648v/6 | ¢y £

Similarly the other two-second-order derivatives are

- . 823
SO o 1250 | kg N
s 129646 a1

- . 97

0 @1 ~1.5 n\j—1
e _ 107 § kg™ N'm
dm; dky 6486 124 £

Conclusion

This Note has outlined the extension of Nelson’s method to enable
the calculation of second- and higher order eigenvector sensitivities.
Nelson’s method has the advantage that only the eigenvalue and
eigenvector of interest and their lower order derivatives are required
to calculate the second or higher derivatives. Furthermore the coef-
ficient matrix required for all the derivatives of a single eigenvector
are the same, with the attendant saving in computation. The method
is easily extended to nonsymmetric matrices, although both left and
right eigenvectors would have to be calculated.
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Introduction

T is well known that all compensators that robustly stabilize

a plant with respect to frequency-domain perturbations can be
parametrized in terms of an arbitrary bounded real function U (s),!
which is referred to as U-parameter design. This parameter has
been used for the robust control design with nominal system optimi-
zation.2 Wei et al.> have explored the application of U-parameter
feedback design to a terrain-following flight control system.

In this Note, by applying the U parameter, we explore an appli-
cation method to achieve the desired performance and robustness
of the flight control system. The closed-loop transfer function of
the feedback system can be formulated with free parameters. For
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given specification, we can determine the desired reference model.
By a model-matching approach, we can minimize the H? norm of
the transfer function error between the designed closed-loop system
and the reference model to determine these free parameters such
that the desired performance and robustness of the system can both
be met. The longitudinal mode of the F-4E flight control system
is considered as a design example to illustrate the validity of the
application method.

U-Parameter Robust Stabilization
Consider the single-input, single-output feedback system shown
in Fig. 1, where P(s) and C(s) denote the transfer functions of
the plant and compensator, respectively. Assume that the perturbed
plant P(s) satisfies 1) that P(s) has the same number of unstable
poles as that of Py(s) and 2) that the plant uncertainty satisfies the
inequality

[P(jw) — Po(Gw)| < |r(jw)l, lrGGw)i > 0, Yw

1
where Py(s) denotes the nominal plant and r (s) is a stable minimum-
phase proper rational function that characterizes the bound of the
uncertainty of the plant.

Lemma 1. 'The closed-loop system shown in Fig. 1 is stable for

all perturbed plants if and only if the closed-loop system is stable
for P(s) = Py(s) and

IC(1+ PCY ir(jw)l <0, Yw )]
Definition 1. A function U (s) analytic in Re[s] > 0 satisfying
UGw)l <1, Yw 3)

is called bounded real (BR).
Define

By(s) =]"[{Z—:Lj} @

Py(s) = B,(s) Po(s) )]
r(e;)

i = = ©)
g Pyley)

where B, (s) is the Blaschke product, ; denote the unstable poles
of Py(s), and &; are the complex conjugate of ;. Then we have the
following theorem.

Theorem 1.%2  For the system shown in Fig. 1, the closed-loop
system with transfer function of the form

Ui(s)
r(s)

is stable for all perturbed plants P (s), where U, (s) is a BR function
that interpolates to the points U;(«;) = ;.

It is well known that all BR functions U, (s) that interpolate given
points in Re[s] > 0 can be parametrized in terms of an arbitrary BR
function U (s) such that U, (s) can be written as

T(s) = Py(s) 0)

_ ROUE) + Fi)
UE = EoUe + o) ®

where the functions F;(s), F2(s), F3(s), and F4(s) are functionals
of o; and ﬁi.z

Fig. 1 Feedback control system.

F-4E Robust Flight Control System Design
In this section, the longitudinal mode of the F-4E flight control
system is considered as a design example.* The transfer function
forms of ¢ (s)/8.(s) (pitch rate/deviation of elevator deflection) for
four typical flight conditions can be obtained as follows:

—13.239(s + 0.884)

FCL:P,(s) =
1) = T 3.068) (s — 1.228)
)
~36.2 1.
FC2y (5 o 36260965 + 1550
5 +4.904)(s — 1.784)
FC3iy 5y = 11308 +0.637)
G + 1.878)(s — 0.560)
(10)
—12. .
R Pysy = 123200 +0.820

(s +1.923)(s — 0.640)

Here we take the average values of poles, zeros, and steady-state
gains of these flight conditions as the nominal plant

_ —19.576(s +0.974)
PO = G293 6 - 1053 v

and then we can determine the plant uncertainties for different flight
conditions as shown in Fig. 2. The bound of the uncertainties is
chosen as

16

r(s) = P 12)

Since «; = 1.053 [unstable pole of Py(s)], we have

By(s) = 19.576(s 4 0.974) 13)
(s +2.943)(s + 1.053)

and
= 24059 s (14)
Py(1.053)
Choosing
as>+bs+c
U6 == o (15)
we have
. .974 5
T(s) = 19.576(s + 0.974)(s + 5)

T 16(s + 2.943)(s + 1.053)

(s — 1.053)[(as? + bs + ¢) /(s + d)*] + 0.56(s + 1.053)
s+ 1.053 + 0.56(s — 1.053)[(as? + bs + ¢)/ (s + d)?]
(16)

InEq. (16), for achieving zero steady-state error to a step input, i.e.,
T (5)]y—0 = 1, we obtain ¢ = 0.0572d?. Further, to ensure a proper
C(s), T (s) has to be strictly proper; thus we have a = —0.56. Thus
the closed-loop transfer function 7 (s) is reduced to

_(2.141.78b+1.99d)s*+(12.5+8.75b+104.9d+1.1d%)s* +(10.2—2.53b+22.2d+7.5d*)s>+(—100b+10.22d+10.984°)s+4.594*

T(s) =

§54(640.82b42.9d)s*+(11.14+2.4b+14.7d+1.5d%) 53 +(6.26—0.95+21.3d +7.48d?) s+ (—2.65b+9.49d+10.57d?)s+4.594?

an
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Fig. 2 Magnitude responses of uncertainties: Py(s) — P1(s) (solid line);
Py(s) — Pa(s) (dashed line); Py(s) — P3(s) (dotted line); Py(s) — Py4(s)
(dash-dotted line); uncertainty bound r(s) (star line).
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Fig. 3 Unit step responses: FC1 (solid line); FC2 (dashed line); FC3
(small-dotted line); FC4 (dash-dotted line); nominal system (star line);
reference model (big-dotted line).

Robust Compensator Design with Desired
Performance Requirements

In this section, the system performance will be considered. Here
we use the model-matching approach to achieve the desired perfor-
mance specification. It is seen that the order difference between the
denominator and numerator of T (s) in Eq. (17) is 1; the reference
model is chosen as

2
Tm(s) = =k

Zm 52 -+ 2{.vp WepS + w_‘z.p

(18)

Following the design speciﬁcation,4 {sp and wy, are chosen as 0.9
and 11, respectively. By adjusting the zero location —z,, by the
model pole-zero pattern,’ it is found that, when z,, = 6, the peak
time is 0.19 s and maximum overshoot is 16.5%. Thus the zero is
chosen at —6; i.e., we have the reference model

20.17(s + 6)
T (5) = =0 8T 19
®) = T To8 12 (19)

To minimize ||T (s) — T,.(s)|l» under the restriction that U (s) is
BR, for simplicity, let b = 1d such that U (s) is always BR for all
d > 0. By minimizing ||T (s) — T, (s)||, with respect to d, we have
d = 6.7and b = 3.35. Then, from Eq. (17), T (s) is determined and
the compensator will be

_ —(L.1s* +11.655> + 41.65* + 60.36s + 31.9)

c
®) 5(s3 + 7.865% + 8.065 + 1.78)

(20)

By applying this compensator to different flight conditions, the sim-
ulation result is given in Fig. 3, which shows that this parametrized
robust compensator can achieve satisfactory performance and ro-
bustness of this flight control system.

Conclusions

By using the U-parameter design method and model-matching
approach, we have explored a simple parametrized robust compen-
sator design method that shows satisfactory system performance
and robustness for a flight control system through simulation.
For the considered design example, the Barmish/Wei theory® and
proportional-plus-integral controller could simultaneously stabilize
the four given plants; however the U -parameter approach possesses
the parametrized formulation of a simultaneous stabilization prob-
lem such that it can be easily applied for model-matching design to
achieve the desired system performance.
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I. Introduction

T is known and accepted that frequencies up to 50 Hz must

be represented in simulating control feel. This translates into a
frame rate of 500 Hz or more for digital electronics.! Only recently
have moderately priced digital systems been able to achieve this
performance. The control loader electronics in use today are still
predominantly analog.

The analog computer of a control loader typically represents a
generic quasilinear model of a control system.! The parameters are
selected to suit the aircraft being simulated and adjusted to fit con-
trol system responses measured in flight or on the ground.?™* As
delivered, the new digital loaders® are programmed to emulate the
logic wired into their analog predecessors. The digital systems offer
improved repeatability and reliability while delivering equivalent
functionality. The implementation reported here exploits the digi-
tal system to model the actual linkage. The specific contributions
made were 1) a commanded force equation derived from the differ-
ence of the aircraft and simulator dynamic equations, 2) a recursive
formalism for treating the linkage, the mathematical formulation
is by induction, which feeds into recursive code. (see Ref. 6 for
details), and 3) a generic force loop to control the actuator and de-
liver the commanded force regardless of the control position and
velocity.

A trial implementation was made at the University of Alabama
Flight Dynamics Laboratory (UA FDL). A force feel system was
integrated for the longitudinal cyclic in the UH1 fixed base simulator
using a McFadden 192B° digital control loader.

Our purpose was to model the control system as accurately as the
hardware of the digital loader allowed (without assist from the sim-
ulation host and/or other computers). Lack of access to a simulator
that requires and supports extreme fidelity, or to a flying UH1, limits
the scope of our validation to checking that the implementation was
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